Mitochondrial Dysfunction Is a Primary Event in Glutamate Neurotoxicity
نویسندگان
چکیده
منابع مشابه
Mitochondrial dysfunction is a primary event in glutamate neurotoxicity.
Excitotoxic neuronal death, associated with neurodegenerative disorders and hypoxic insults, results from excessive exposure to excitatory neurotransmitters. Glutamate neurotoxicity is triggered primarily by massive Ca2+ influx arising from overstimulation of the NMDA subtype of glutamate receptors. The underlying mechanisms, however, remain elusive. We have tested the hypothesis that mitochond...
متن کاملPhlorofucofuroeckol Improves Glutamate-Induced Neurotoxicity through Modulation of Oxidative Stress-Mediated Mitochondrial Dysfunction in PC12 Cells
Stroke is a complex neurodegenerative disorder with a clinically high prevalence and mortality. Despite many efforts to protect against ischemic stroke, its incidence and related permanent disabilities continue to increase. In this study, we found that pretreatment with phlorofucofuroeckol (PFF), isolated from brown algae species, significantly increased cell viability in glutamate-stimulated P...
متن کاملNitric oxide mediates glutamate neurotoxicity in primary cortical cultures.
Nitric oxide (NO) mediates several biological actions, including relaxation of blood vessels, cytotoxicity of activated macrophages, and formation of cGMP by activation of glutamate receptors in cerebellar slices. Nitric oxide synthase (EC 1.14.23.-) immunoreactivity is colocalized with nicotinamide adenine di-nucleotide phosphate diaphorase in neurons that are uniquely resistant to toxic insul...
متن کاملDexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity.
Dexras1, a small G-protein localized predominantly to the brain, is transcriptionally upregulated by the synthetic glucocorticoid dexamethasone. It has close homology to the Ras subfamily but differs in that Dexras1 contains an extended 7 kDa C-terminal tail. Previous studies in our laboratory showed that NMDA receptor activation, via NO and Dexras1, physiologically stimulates DMT1, the major i...
متن کاملMitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles.
Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Neuroscience
سال: 1996
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.16-19-06125.1996